Whole-central nervous system functional imaging in larval Drosophila
نویسندگان
چکیده
Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.
منابع مشابه
Peptidomics of the larval Drosophila melanogaster central nervous system.
Neuropeptides regulate most, if not all, biological processes in the animal kingdom, but only seven have been isolated and sequenced from Drosophila melanogaster. In analogy with the proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomics approach aims at the simultaneous identification of the whole peptidome of a cell or tissue, i.e. all expressed ...
متن کاملCentral projections of persistent larval sensory neurons prefigure adult sensory pathways in the CNS of Drosophila.
We have used a GAL4 enhancer-trap line driving the expression of a lacZ construct to examine the reorganisation of an identified group of proprioceptive sensory neurons during metamorphosis in Drosophila. The results show that whilst most larval sensory neurons degenerate during the first 24 hours of metamorphosis a segmentally repeated array of 6 neurons per segment persists into the adult sta...
متن کاملLive imaging of Drosophila larval neuroblasts.
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once ...
متن کاملLive imaging of neuroblast lineages within intact larval brains in Drosophila.
Neuroblasts are the precursors of the Drosophila central nervous system and undergo repeated physical and molecular asymmetric cell divisions. Live imaging of neuroblast lineages within intact Drosophila larval brains has dramatically improved our current understanding of basic cellular processes such as the establishment of cell polarity, spindle orientation, and cytokinesis. The analysis of m...
متن کاملAffinity-based isolation of tagged nuclei from Drosophila tissues for gene expression analysis.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as tra...
متن کامل